
The P6 Architecture:

Background Information
for Developers

©1995, Intel Corporation

This is an overview of the P6 processor, highlighting all of the important
features -- intended especially for software developers.

The first P6 will run at 133MHz. Internal level 1 data and code caches are
8KBytes backed up by the large 256KByte level 2 cache (in the first P6) that is
only 3 processor clock cycles longer in access latency. That’s faster than
ADS# can be asserted on the bus.

P6 is built to allow scalable multi-processing, including a built-in interrupt
controller and a multiprocessing-capable bus.

An important feature to note is that the P6 is fully compatible with the
instruction set of the Intel486TM and Pentium processors. P6 will enhance the
instruction set, but backwards compatibility is a prime goal.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA

AA
AA
AAAA

AAAAA
AAA
AA
AA
AA
AA
AAA
A

A
A
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A

AAA
AAA
AAA

AA
AAAA
AAAAAA
AAA
AAA
A
A
A
A
A
AAA
AAA
AA
AA
AAA

AAA
AAA
AA
AA
AA

AAA
AAA
AAA
AA
AA

AA
AA
AA

P6 CPU Overview
Bus Controller
• MP-ready system bus
• 64-bit data bus/ECC
• 36-bit address

bus/parity
• Choice of 1/2, 1/3, &

1/4 of core frequency

L2 Cache
• 256K initially
• 4-way set associative
• Non-blocking
• MESI protocol

CPU
• Dynamic Execution
• 133MHz core

frequency
• 8K L1 caches
• APIC

P6 is Fully Intel Architecture Compatible

The P6’s prime difference over the Pentium processor is the Dynamic
Execution internal architecture. The P6 is designed to be completely non-
blocking. To achieve this, P6 integrates the concepts of speculative execution
across multiple basic block boundaries (branches) with register renaming and
out-of-order execution via a true dataflow compute engine.

●Non-blocking architecture
–Prevents processor stalls during cache, memory, I/O accesses

●Out-of-order execution
–Executes all available instructions as data dependencies are resolved

●Speculative execution with multiple branch prediction
–Eliminates CPU stalls when branch occurs
–Further improves effectiveness of O-O-O

●Register Renaming
–Eliminates false dependencies caused by limited register set size
–Also improves effectiveness of O-O-O

P6 Dynamic Execution Architecture
 Extends the Intel Architecture Beyond Superscalar

The P6 implements a true dataflow engine. It will execute any instruction
whose dependencies are resolved, potentially well ahead of its “normal”
execution time. Even cache misses will not stop it finding useful work to do.

All instructions are executed into a pool of temporary state and “retired” at a
later linear time.

We’ll see more about this example set of instructions later.

Data Flow Engine
Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Branch to 12

Instruction 10

Instruction 11

Instruction 12

Instruction 13

Instruction 14

Instruction 15

Instruction 16

Instruction 17

Instruction Pointer

• P6 Implements a dataflow
engine

• Instructions usually have
numerous dependencies
(registers, flags, memory,
etc.)

• Instruction dependencies are
rigorously observed

• When all sources are
available instruction is ready
to execute

• When execution unit is
available, instruction
executes

The simple linear execution of a von Neumann instruction stream is a limiter
to execution performance while instructions are waiting for dependencies to be
fulfilled. In many code sequences the apparent dependence of instructions
upon each other and on processor resources can be removed by allowing the
dependence-free instructions to execute ahead of their normal execution time
and allowing the processor to hold their results in temporary state.

The example shows four instructions where b,c and d could all execute at the
same time with no impact on the correctness of the results. This mechanism is
termed Out-Of-Order.

OOO allows the processor to do
useful work even though instructions

may be blocked!

OUT-OF-ORDER?

a: r1 = Mem(x)

b: r3 = r1+ r2

c: r5 = 9

d: r4 = r4 + 1

• What is Out-of Order?

• Instructions with dependencies
resolved, or no dependencies,
may execute ahead of their von
Neumann Schedule

• This is a data flow sequence

• Example on right: a:, c: and d: could
execute at the same time

• This would enable us to execute
the sequence in 2 cycles rather
than 4

• In previous Superscalar processors,
compilers re-scheduled code to create
the same effect. Thus P6 has less
dependence on compilers for
performance.

The initial sentence stated speculative execution. To define what we mean by
speculative execution we should first look at speculative prefetch. The
Intel486TM processor did not implement any level of speculation. The
Pentium processor implemented a degree of speculative prefetch to the point
where if a branch was predicted, the code at the destination of the branch
would be prefetched potentially as far ahead as the next branch instruction.

The P6 will speculatively predict branches and prefetch the destination code
through numerous branches and returns. In the example above, the P6 allows
all of the light colored code to be in the P6 internals and to be in various states
of execution.

Thus the P6 implements speculative execution as well as speculative prefetch!

Speculative Prefetch

Correct Branch Prediction is VITAL
 for Superpipelined processors

A B

C

Start
• Assuming the code sequence on

the right:

• An Intel486 TM Processor would
have executed from start to
A, then flushed the prefetch
pipe. It would have resumed
pre-fetching and execution at
the destination address.

• A Pentium ® Processor could
have speculatively prefetched
the code from the destination
address and as far down as B
before the branch at A is
actually taken

• The P6 could have
speculatively prefetched the
code from start to C and
beyond, and can execute any
or all of it before the branch at
A is actually committed as
taken

To show what speculative execution actually looks like, the above diagram
gives an example. In this code sequence, the gray instructions have
dependencies that are initially unresolved (with arrows indicating the
instructions they are dependent upon). The orange instructions have no
dependencies.

The timeline shows the dispatching of three instructions for execution. The
first instruction is a load instruction that misses the cache. The other two
instructions are executed in one clock. In the second clock three further
instructions are dispatched, the first of which is another cache miss. It can be
seen from this diagram that we have actually executed four instructions and
started a fifth (the second cache miss load) before the end of the second clock
and all well within the latency of the first cache miss .

In a normal sequential, or even supercalar machine, we would still be waiting
for the data of the first cache miss load to return. The full latency of the second
cache miss load is masked by the latency of the first miss, showing only the
incremental latency of the of the second miss -- the orange colored section at
the end of the timeline.

• The execution of an
instruction is not
restricted to its
position in the code
linear sequence

• Execution is
dependent upon the
“readiness” of the
instructions
components

• Multiple
instructions can be
dispatched for
execution from
disjointed areas of
code

Speculative Execution

time

Instruction
Pointer

Reg/Reg MOV 1

Branch to 12

Miss Load 1

Instruction 2

Instruction 4

FADD 1

Miss LOAD 2

Instruction 7

Instruction 10

Instruction 11

HIt Load 3

Reg/Reg MOV 2

Instruction 15

Instruction 16

Instruction 17

ST 1

We have seen the graphic of this slide before in the context of OOO. This time
we need to emphasize the non-blocking aspects of what is shown. The cache
miss does not stall the processor. There is useful execution continuing within
the cache miss latency and the full latency of subsequent cache misses is
hidden.

• Memory access is
initiated ahead,
acting as a data
prefetch

• Useful computation
is done while
waiting for data to
return

• Multiple cache
misses do not
cumulatively add
their latencies

Non Blocking Architecture
Pointer

time

Instruction

Reg/Reg MOV 1

Branch to 12

Miss Load 1

Instruction 2

Instruction 4

FADD 1

Miss LOAD 2

Instruction 7

Instruction 10

Instruction 11

HIt Load 3

Reg/Reg MOV 2
Instruction 15

Instruction 16

Instruction 17

ST 1

Instructions are dispatched and executed out of order. To allow for real binary
compatibility, where not only do instructions mean the same things but already
coded algorithms mean the same thing, the P6 implements an in-order update
to permanent processor state - Instruction Retirement.

Instructions are retired at a maximum rate of 3 per clock cycle. The ROB looks
like a circular sequentially addressed retirement pointer that continues to
sequentially retire instructions chasing the speculative execution engine.

Instruction Retirement

time

Retirement
Pointer

Reg/Reg MOV 1

Branch to 12

Instruction 2

Instruction 4

FADD 1

Miss LOAD 2

Instruction 7

Instruction 10

Instruction 11

HIt Load 3

Reg/Reg MOV 2

Instruction 15

Instruction 16

Instruction 17

ST 1

Instruction 1

• Instructions are fetched in-
order, executed Out-Of-Order

• The retirement of instructions
is in-order

• Retirement pointer identifies
the block of instructions that
are being committed to
permanent processor state

• Multiple instructions can be
retired. They always live in a
sequential block of 3
instructions

Register renaming is a key element in the P6 to allowing the out-of-order
engine to work. The normal 8 general purpose registers of the Intel
Architecture would become exhausted very quickly without the ability to
transparently reference a larger number. The mechanism is simplistic to
describe. When software references the EAX register, the internal machine
references an aliased register number. Each future read of this register
references the same register number, i.e. a true dependency. Each future write
of this register references a new register number, transparently a different
physical register.

The example above shows a false dependency on the EAX register within the 4
instructions. P6 would reference completely different registers for the first two
instructions in comparison with the last two instructions.

The P6 has 40 physical registers apart from the 8 real registers.

• Intel Architecture processors have a
relatively small number of general
purpose registers

• False dependencies can be caused by
the need to reuse registers for
unconnected reasons, i.e.

• MOV EAX, 17

• ADD Mem, EAX

• MOV EAX, 3

• ADD EAX, EBX

 Increased number of registers allows
non-blocking architecture to continue execution

Register Renaming

RRF

PRF

EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

In the next section, we will review the P6 pipeline, focussing on the in-order
front end which consists of the initial 6 stages of the P6 pipe.

The P6 Pipeline

In-Order Front End Out-Of-Order Core In-Order Back End

IFU1 DISROBRATDECDECIFU3IFU2 RETRETEX

IEU

AGU

DCU

DTLBPMH

MOB

BAC

BTB

BBL

FEU

IFU

EBL

RS

MIU

ALLOCMIS

ID RAT

L2

BUS
Cluster

Instruction
Fetch
Cluster

Memory Cluster

External BUS

ROB
RRF

Issue
Cluster

OOO Cluster

Execution Cluster

The first three stages of the pipeline are the instruction fetch unit. The first
stage performs a read of the Icache. The data read, a 16 byte half cache line
buffer full of code, is passed on to the second stage - the Instruction Length
Decoder. This stage marks the beginning and end of each instruction and
passes data on to two places:

1. The first destination is the BTB, where a target address lookup is performed.
If a valid target is found a new IFU address is presented to the first stage and
the new code fetched.

2. The second destination is the third stage of the IFU. This is the instruction
rotation stage where instructions are rotated to align exactly with their
respective decoder units.

The performance of the IFU and decoder combination is independent of where
the code is fetched from, cache or memory. That is, no pre-decoded
information is stored with the instructions as in the Pentium processor
architecture.

The cache line overrun caused by the BTB prediction being one clock cycle
down the pipeline actually can improve performance.

High Bandwidth
Decoder

• Decoder throughput is
independent of cache hit/miss

• 3 instructions/clock maximum
throughput

• Code only cached in L1 when
executed

• Instruction streaming buffer
overruns on a branch

• This can increase
performance!

Instruction
Streaming

Buffer Branch
Target
BufferInstruction

Length
Decoder

IFU1

DIS

ROB

RAT

DEC

DEC

IFU3

IFU2

RET

RET

EX

Decoder

Decode
Queue

The BTB will only make a prediction on branches it has seen taken previously.

The BTB is twice the depth and width of the Pentium processor’s
implementation. It can present the front end of the IFU with up to 4 new target
addresses per 16 byte line. (Note, this is different than the normal 32byte cache
line size). The Pentium processor implementation was capable of only
delivering a single prediction.

The BTB also implements a Return Stack Buffer (RSB). The RSB will turn the
almost certain branch misprediction caused by the return statement at the end
of a sub-routine into an almost certain correct prediction. This works very
much like the processor’s internal stack mechanism.

The BTB does not implement the static branch prediction mechanism but does
work in conjunction with it. In the absence of a BTB prediction on a decoded
branch, a static prediction will be made. The BTB is then updated.

Large Branch Target Buffer

Instruction
Streaming
Buffer

Branch

Target

Buffer

Decoder

Instruction
Length

Decoder

• 512 Branch to/from entries
cached

• Branch targets only
cached when seen taken

• 2 level adaptive algorithm

• Static branch predictor

• Return Stack Buffer

• Reduces misprediction
for RET instructions

The static prediction algorithm is depicted in the flow diagram above. It is best
exemplified by following the decision tree down the center. That is, if there
has been no prediction from the BTB, and the branch is relative to the
current EIP, and the branch is conditional, and the sense of the branch is
backwards, then it will be predicted to be taken by the static algorithm. The
BTB will be updated so that the 5-6 clocks expended this time will be reduced
to one the next time this branch is seen.

Static Prediction

BTB Miss?

No

No

Unconditional
IP-Relative?

IP-Relative? RET?
No

Yes

Yes

Yes

Yes

Yes

Conditional?

Backwards?

Taken

Taken

Taken

Taken

Taken

BTB’s
Decision

Not Taken

No

No

Register
Indirect
Jump

No

Yes

P6 execution performance benefits considerably from a high frequency of
correct branch predictions. Several techniques can help improve the branch
prediction hit rate.

Compilers that understand and implement the static prediction algorithm,
Proton V2.0, will see an improved level of performance. This improvement
will vary from application to application.

Heuristic profile feedback is starting to be used at the high end of the
application marketplace. The feedback mechanism allows the compiler/linker
to create a “packing” of frequently executed code into contiguous units with
predictable branches forming the decision loops. Proton V2.0 has this
capability.

Can we help the P6 Predict Branches?

YES!

• Get rid of branches when possible

• Make those remaining more predictable

• Observe static prediction algorithm

• Profile driven code reorganization will
improve performance

• New CMOV instruction can reduce
branch frequency for higher
performance (loses backwards
compatibility)

The Reservation Station (RS) has the task of dispatching ready UOPS off to
the execution units. The P6 has 5 internal ports upon which we can dispatch
UOPS. The P6 can dispatch and writeback 5 UOPS in the same clock cycle
(simultaneously).

The execution capabilities are encompassed by:

Port 0 - Two Address generation units

Two Floating point units

Integer execution unit

Port 1 - Integer execution unit (higher capability)

Branch execution

Port 2 - Load Unit

Port 3 - Store address unit

Port 4 - Store Data unit.

Core Dispatch Capabilities

Address
Generation

Unit

FP Unit

Re-Order
Buffer

Load
Unit

Store
Address

Unit

Store
Data
Unit

Integer
Unit 1

Integer
Unit 2

Reservation
Station

Port 1

Port 3Port 2

Port 0

Port 4

MOV EAX,[Memref]

MOV [Memref], EAX

DAA
JMP XXXXINC EAX

FDIV ST0

LEA EAX FP Unit

FMUL ST0

Having the ability to execute OOO as shown on the previous slide would be of
little value if the engine were stalled by a “conventional” cache design.

The caches in the P6, both L1 and L2, are non-blocking. That is, they will
initiate the actions necessary to return data to cache miss while they respond to
subsequent cached data requests. The caches will support up to 4 outstanding
misses. These misses translate into outstanding requests on the P6 bus. The bus
can support up to 8 outstanding requests at any moment in time. The cache
will also “squash” (suspend) subsequent requests for the same missed cache
line. Squashed requests are not counted in the number of outstanding requests
above. Once the engine has executed beyond the 4 outstanding requests,
subsequent load requests are placed in the (12 deep) load buffer.

Smart Internal Caches

Cache Memory

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Branch to 12

Instruction 10

Instruction 11

Instruction 12

Instruction 13

Instruction 14

Instruction 15

Instruction 16

Instruction 17

• 256K 4-way set
associative second level
cache

• Full speed, split
transaction L2 data path

• Non-blocking cache
structure

• Capability for 4 active
outstanding cache
misses

• Other loads placed in
load buffer (12 deep)

The P6’s non-blocking core capabilities are propagated out onto the system
bus. The transaction based bus removes the execution suspension
characteristics associated with a coupled bus as in the Intel486TM Processor
and the Pentium® Processor.

The bus is also capable of reordering transactions, via the DEFER response, to
support long latency accesses (i.e. going through some slow I/O or intercluster
controller).

The bus has been simulated at being 21% loaded in an on line transaction
processing (OLTP) environment in which it supports > 400TPS. The bus
obviously supports multiprocessing and in the case where there are 4
processors executing in a OLTP environment, the system performance scaling
factor is ~3.1 on transaction processing workloads.

10%

Transaction-Oriented P6 Bus

Address Address AddressAddress

Data Data Data DataData Data DataP6 Bus is non-blocking

• Demultiplexed

• 64-bit data

• 36-bit physical address

• O-O-O

• 8 Outstanding bus requests
allowed

Bus Utilization Vs. No. of Procs

0%

20%

30%

40%

50%

60%

70%

80%

1 Proc 2 Proc 3 Proc 4 Proc

70%

57%

40%

21%

256KB L2

OLTP

The P6 has implemented an Out-Of-Order engine. What would happen if we
allowed that OOO execution flow to hit memory, which, because of the
relatively small register set, Intel architecture processors do quite often? We
would lose compatibility with existing coded algorithm, drivers, operating
systems and applications! Alternatively, if we forced strict ordering we would
leave quite a lot of performance on the table.

We allow the re-ordering of loads (reads) within loads. We allow loads to be
executed ahead of stores (writes). This is done carefully such that stores to the
same address as a previously executed load are snooped and the data from the
store buffer is forwarded to the previously loaded register (store buffer
forwarding).

However, stores are NOT allowed to pass stores. This restruction only costs us
about 3-5% in performance. The code example above shows 6 instruction with
3 stores. In this example if we were to re-order stores we would have a Fire,
Ready, Aim possibility -- which we cannot allow.

Memory Effects of OOO

How do we control where we can do what?

MOV EAX, Bullet

MOV [AMMO], EAX

MOV EAX, Target

MOV [SIGHT], EAX

MOV EAX, "Fire"

MOV [TRIGGER], EAX

• What does O-O-O do when it hits
memory?

• Intel Processors go to memory
quite a lot

• If we allow a true weakly ordered
system, would lose old binary
compatibility!

• Strong ordering leaves a lot of
performance on the table (>25%)

• What options can we allow?

• Loads can pass loads (helps a
lot)

• Loads can carefully pass stores
(helps a lot)

• Stores CANNOT pass stores or
else it is ‘FIRE, READY, AIM’

The mechanism which we use to control the way the P6 interacts with memory
is called the Memory Type Range Registers. These are the registers that were
typically contained within chip sets. These registers have been moved into the
processor for performance reasons.

The memory granularity is:

64KByte 00000 - 7FFFFH

16KByte 80000 - BFFFFH

4KByte C0000 - FFFFFH

1MByte 100000 - FFFFFFFFH in 8 separate regions

The USWC memory type is a new memory type brought in by the P6.

A note for those of you that have integrated frame buffer capable video
controllers in motherboard designs: You will get great video performance from
the P6. You will get even better video performance if the BIOS sets the frame
buffer memory range to USWC memory type.

Memory Type Range Registers

Software takes over configuration of the hardware

Memory Mapped I/O

Low Performance
Frame Buffer

Write Back Cacheable
System Memory

EPROM AREAS

Higher Performance
Frame Buffer

• MTRR’s are used to “color”
memory regions and define
what can be done where

• Memory colors are:

• UNCACHEABLE

• WRITE THROUGH

• WRITEBACK

• WRITE PROTECT

• UNCACHEABLE,
SPECULATABLE, WRITE
COMBINING

• 8 Variable Ranges above 1M

